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The 3D Printing Process

Any material as a
powder

Scaleable with
multiple nozzles

Local Composition
Control

3D Printing is an SFF Process which creates parts in layers.
Each layer is formed by spreading powder and selectively
joining the powder by ink-jet printing of a binder material.
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MIT’s 8-jet Printhead

Allows for wide range of materials,
precise droplet location and scalability.

Printing a layer



Removing the Green Part from the Powder Bed



Office Modeler;
 Z Corp.,   Burlington, MA

• Low cost machine.
• Office environment (water binder, starch powder or plaster based)
• High reliability.
• FAST



Ceramic Molds for Metal Castings;
Soligen, Inc.  Northridge, CA

• 3D Print Ceramic mold
– Colloidal silica binder into alumina powder

• Fastest route to a casting.
• Soligen Operates “Parts Now” which accepts files

and returns castings.

* It    1 



Filters;
 Specific Surfaces,   Franklin, MA

• Focus: ceramic filters for power
plants - high filter area, durable,
cleanable.

• Successful tests in “bag houses”
(2000 hours).  Tests on full scale
pilot plant next.  EPRI funded.



Medical Applications;
Therics, Inc.  Princeton, NJ

• Drug delivery devices.
• Scaffolds for tissue engineering.
• Direct printing of tissue and

organs.
• Direct printing of metallic

prostheses.



Direct Printing of Metal Tooling;
 ExtrudeHone Corp.,   Irwin, PA

• Directly print metal tooling.
– Polymer binder into metal powder.



Tooling by Direct Printing

        Colloidal latex binder

        Stainless steel or
         tool steel powder

Remove
unprinted

powder

Green part
58% metal

10% polymer
32% open porosity

Debind by
thermal decomposition &
pre-sinter to 63% dense

Infiltrate to
full density
with copper

alloy

Finish Tool
Insert



Finished Tool and Molded Part



Conformal Cooling in an Industrial Application

Improvement over Production Tool
Cycle time           Part Distortion

Condition #1

Condition #2

Tool made by 3D Printing
with serpentine cooling

channel

15%(limited by sprue) 9%
37%  0%(limited by sprue)



Conformal Cooling; Data from Design of Expt’s

• Typically
– 20% reduction in cycle time
– 15% reduction in shrinkage

Schmidt et al, “Conformal Cooling vs Conventional Cooling: An Injection
Molding Case Study with p-20 and 3DP tooling, MRS 4/00



Partnership in Technology

• Blow Mold Cavities
– MoldFusion™ First Design

• Two conformal and opposing flow circuits

– MoldFusion™ Second Design
• Two conformal linear flow circuits
• Turbulence chevron features

EXIRUDEHONE 



Demonstration of Performance:Conformal Cooling
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Conformal Cooling Condition
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Conformal Cooling Channel
Design Methodology

• Design for conformal cooling
• Design for sufficient cooling
• Design for temperature drop
• Design for cooling uniformity
• Design for pressure drop
• Design for mold strength & 
              deflection 

before design
 part
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zone 2

cooling 
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 entire
mold
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Surface Textures for Heat Transfer Augmentation
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Rapid Thermal Cycle Tooling
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3D Printed Tool for Rapid Thermal Cycling

The tool has cooling/heating channels in the top plate and stands on 2000 posts
(which allow for thermal expansion/contraction)



Homogeneous Metal Parts by Infiltration

Porous skeleton of
nickel or other high
temperature material

Infiltration using same
material containing a

melting point depressant
(MPD)

Diffusion of MPD into
skeleton creates a solid

homogeneous part

~1 min ~1 hour

Liquid 
Infiltrant

Nickel
Skeleton

Homogeneous
Final Part ~1 kg infiltrated part (Ni–4Si)



Infiltration Distance

• Capillary limit

>0.5 m typical for 100 �m
powder

• Premature freezing of
infiltrant can choke
liquid flow

Steel infiltrated
with Cu

Ni infiltrated
with Ni-10Si

rg
h �

�

21
��

Skeleton made of ~ 50–150 �m powder (both cases)



Solidification Time Sequence

5 minutes100 seconds10 seconds

Initial 50�m wire

• Wire bundle infiltrated and
quenched at various times

• Ni wire w/ Ni–10Si infiltrant
• Infiltrated at 1200°C



Solidification Time Sequence

5 minutes100 seconds10 seconds

Initial 50�m wire

• Wire bundle infiltrated and
quenched at various times

• Ni wire w/ Ni–10Si infiltrant
• Infiltrated at 1200°C



Mechanical Properties

• Infiltrated skeleton held 12 hrs at 1200°C
for homogenization

• Cast ingot of same composition
• Hopefully Cr or other elements will

provide more strengthening

Tensile Tests of Ni-4Si Specimens
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Other Material Systems

• Al–Si
– Low solubility (no freeze-off)
– Similar to cast microstructure
– Pure Al infiltrated w/ Al–12Si at 625°C achieved

93.5% density

• Ni–Cr–Si
– solid solution strengthening
– keep constant Ni:Cr ratio  during diffusional

solidification

• Steel?
Ni:Cr ratio 

constant

Ni Cr

Si

1250°C

0.2 0.4 0.6 0.8 
MOLE_FRACTION CR 

1.0 



3D Printing: Dry vs. Wet Layer Spreading

• Anything that
can be slurry
processed

Dry
• Spherical as small as 10 �
• Acycular as small as 20 �

Wet



Parts with Fine Metal Powder



Architecture 1: Stationary Bed, Raster Print

Powder Bed

Feed Piston

Gantry

Fast Axis

Slow
Axis

Printhead Inspection

Powder Spreading Roller

Z Corp.

ExtrudeHone Corp.



Small Parts; Distinguishing Features

• Powder beds are small , light (<1 kg) and often cohesive.
�  Move powder bed

• Perimeter is short
� Vector Print the perimeter.

Vector printing
X axis

Y
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Raster printing
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Y
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1.  Substrate
Load &
Unload

2.  Layer
Forming

2a. Layer Inspection
(Done in transit)

3.  Layer
Drying

4.  Binder
Printing

5.  Binder Drying

Architecture 2: Moving Bed, Vector Print

• All stations in use all
the time.

• Automation ready.
• Improved surface

finish.



Barrium Titanate Parts made by 3DP with Slurry



Local Composition Control; Like Color ink-jet Printing,
but with Materials

Titanium Carbide
slurry printed in Moly
powder;  83% dense



Information FlowInformation Flow
CAD ModelCAD ModelCAD Model

Mesh GeneratorMeshMesh GeneratorGenerator

Tetrahedral ModelTetrahedral ModelTetrahedral Model

LCC ModelerLCC ModelerLCC Modeler

Geometric SliceGeometric SliceGeometric Slice

Halftone ProcessHalftone ProcessHalftone Process

EncoderEncoderEncoder

Material SliceMaterial SliceMaterial Slice

Halftoned SliceHalftonedHalftoned Slice Slice

Instruction FileInstruction FileInstruction File

3D Printing3D Printing3D Printing

(a) LCC object design 

Dimension: 
- 110mm X 68mm X 30mm in 

FA SA, VA, respectively 

(d) printed layer 



Summary:
3DP for Thermal Management

• Cooling/heating channels - high complexity
• Surface textures
• Macro cellular structures
• Locally controlled porosity
• Locally controlled thermal conductivity
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